A Riemannian geometry for low-rank matrix completion

نویسندگان

  • Bamdev Mishra
  • K. Adithya Apuroop
  • Rodolphe Sepulchre
چکیده

We propose a new Riemannian geometry for fixed-rank matrices that is specifically tailored to the low-rank matrix completion problem. Exploiting the degree of freedom of a quotient space, we tune the metric on our search space to the particular least square cost function. At one level, it illustrates in a novel way how to exploit the versatile framework of optimization on quotient manifold. At another level, our algorithms can be considered as improved versions of LMaFit, the state-of-the-art Gauss-Seidel algorithm. We develop necessary tools needed to perform both first-order and second-order optimization. In particular, we propose gradient descent schemes (steepest descent and conjugate gradient) and trust-region algorithms. We also show that, thanks to the simplicity of the cost function, it is numerically cheap to perform an exact linesearch given a search direction, which makes our algorithms competitive with the state-of-the-art on standard low-rank matrix completion instances.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Low-Rank Matrix Completion by Riemannian Optimization

Low-rank matrix completion is the problem where one tries to recover a low-rank matrix from noisy observations of a subset of its entries. In this paper, we propose RMC, a new method to deal with the problem of robust low-rank matrix completion, i.e., matrix completion where a fraction of the observed entries are corrupted by non-Gaussian noise, typically outliers. The method relies on the idea...

متن کامل

Low-rank matrix completion by Riemannian optimization—extended version

The matrix completion problem consists of finding or approximating a low-rank matrix based on a few samples of this matrix. We propose a new algorithm for matrix completion that minimizes the least-square distance on the sampling set over the Riemannian manifold of fixed-rank matrices. The algorithm is an adaptation of classical non-linear conjugate gradients, developed within the framework of ...

متن کامل

Low-Rank Matrix Completion by Riemannian Optimization

The matrix completion problem consists of finding or approximating a low-rank matrix based on a few samples of this matrix. We propose a novel algorithm for matrix completion that minimizes the least square distance on the sampling set over the Riemannian manifold of fixed-rank matrices. The algorithm is an adaptation of classical non-linear conjugate gradients, developed within the framework o...

متن کامل

Guarantees of Riemannian Optimization for Low Rank Matrix Completion

We study the Riemannian optimization methods on the embedded manifold of low rank matrices for the problem of matrix completion, which is about recovering a low rank matrix from its partial entries. Assume m entries of an n× n rank r matrix are sampled independently and uniformly with replacement. We first prove that with high probability the Riemannian gradient descent and conjugate gradient d...

متن کامل

A Riemannian gossip approach to decentralized matrix completion

In this paper, we propose novel gossip algorithms for the low-rank decentralized matrix completion problem. The proposed approach is on the Riemannian Grassmann manifold that allows local matrix completion by different agents while achieving asymptotic consensus on the global low-rank factors. The resulting approach is scalable and parallelizable. Our numerical experiments show the good perform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1211.1550  شماره 

صفحات  -

تاریخ انتشار 2012